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Abstract

The influence of magnetic fields and cavitation on the Richtmyer - Meshkov type
instability in liquid mercury have been studied numerically. Numerical results shed
light on the evolution of the proposed Muon Collider target which will be designed
as a pulsed jet of mercury interacting with high intensity proton beams in a strong
magnetic field. We have shown that a uniform magnetic field significantly reduces
amplitudes and velocities of surface instabilities and is able to stabilize the jet during
period of time typical for the jet breakup at zero magnetic field. We have developed
a simple homogeneous two-phase equation of state for modeling the evolution of
waves in mercury in the presence of cavitation bubbles and studied the Richtmyer-
Meshkov instability in the presence of cavitation.
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1 Introduction

Studies of the shock-induced Richtmyer-Meshkov (RM) instability is impor-
tant from both fundamental and applied points of view. RM instability arises
when an interface between two different fluids or gases (ie.: different densities)
is rapidly accelerated. RM instability can be considered as a special case of
the Rayleigh-Taylor instability which occurs when a density interface experi-
ences a constant acceleration. The instability manifests itself in the form of
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the unbounded growth of initial perturbations on the interface [2,4,11]. RM
instability is important in both natural phenomena (supernovae) and tech-
nological applications (inertial confinement fusion) [5]. More generally, it is
typical for processes involving explosions.

In this paper, we present results of the numerical study of RM instability in
the presence of cavitation and magnetic fields. Namely, we have studied the
growth of surface instabilities in conducting liquid jets in strong magnetic fields
due to external energy depositions. Our study was motivated by the target
problem for the proposed Muon Collider. The target will be designed as a
pulsed jet of mercury (high Z-liquid) interacting with a high energy proton
beam in the presence of a strong magnetic field [20]. Interactions of strong
shocks or shock type waves with the surface of a free moving liquid mercury jet
may create major complications in the target operation. Previous numerical
[10,21] and experimental [6,7,15] studies of the mercury jet - proton beam
interaction in the absence of a magnetic field indicate that the mercury jet
will be completely broken into a system of droplets due to the proton energy
deposition within several milliseconds. This makes it impossible to deposit
multiple proton pulses in the mercury jet and creates implications for the
target design. We have studied the Richtmyer-Meshkov type instability in
the mercury target including MHD effects and showed that magnetic field
significantly reduces surface instabilities.

The system of free surface MHD equations is an example of a coupled hyper-
bolic - elliptic (or parabolic) system in a geometrically complex and dynam-
ically evolving domain. We have developed a numerical method for solving
such systems and the corresponding parallel software. The numerical meth-
ods for the hyperbolic subsystem is based on FronTier, a hydrodynamics code
with free interface support [9]. FronTier uses front tracking [8], a numeri-
cal technique for solving systems of conservation laws in which the evolution
of discontinuities is determined through solutions of the associated Riemann
problem. The elliptic or parabolic subsystem of the MHD equations is solved
using an embedded boundary finite volume discretization method in the do-
main bounded by the free interface [13]. However, in the present geometry
of our 2D numerical experiments the solution of the elliptic problem can be
obtain analytically. This allows us to skip the expensive step of solving the
elliptic problem numerically. This simplification is not valid for other config-
urations of the jet and for 3D problems in particular.

Numerical simulations performed with a single phase equation of state (EOS)
for liquid mercury (stiffened polytropic EOS) have shown that the strength of
rarefaction waves in the mercury target significantly exceeds the mercury cav-
itation threshold [24]. We believe that the formation of cavities takes place in
strong rarefaction waves and cavitation bubbles influence the wave dynamics
in mercury and the Richtmyer-Meshkov instability of the jet surface. Exper-



imental results tend to confirm this assumption. Therefore the modeling of
cavitation and liquid properties under extreme thermodynamic conditions is
essential for obtaining accurate predictions based on numerical simulations.
We have developed a simple homogeneous two-phase equation of state for
modeling wave dynamics in fluids in the presence of cavitation bubbles. We
have applied this model to study the interaction of mercury with an intensive
proton pulse in the geometry typical for Muon Collider/Neutrino Factory ex-
periments at the Brookhaven National Laboratory (BNL) and CERN. In this
paper, we discuss simulation results and the future work on the cavitation
modeling.

The paper is organized as follows. In Section 2, we formulate the main system
of MHD equations and discuss some simplifying assumptions. The numerical
implementation of the MHD system in the FronTier code is given in Section 3.
In Section 4, we present results of the numerical simulations of the Richtmyer-
Meshkov instability in free surface MHD jets and discuss applications to the
Muon Collider target design. Section 5 contains the description of the two-
phase EOS model. Results of the numerical simulation of mercury thimble
experiments are discussed in Section 6. Finally, we conclude the paper with a
summary of our results and perspectives for future work.

2 Equations for Magnetohydrodynamics of Free Surface Liquids

The system of MHD equations [12,16] contains a hyperbolic system of the
mass, momentum and energy conservation equations for the fluid and a parabolic
equation for the evolution of the magnetic field:
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Here u, p and E are the velocity, density, and the specific internal energy of
the fluid, respectively, P is the pressure, g is the gravitational acceleration, B
is the magnetic field induction, J = V x H is the current density distribution,
and o is the fluid conductivity. The magnetic field H and magnetic induction



B are related by the magnetic permeability coefficient u: B = pH. In the
system (1) - (5), we neglected effects of the heat conduction and viscosity.

The system (1-3) must be closed with an equation of state (EOS). We are es-
pecially interested in fluid behavior under extreme thermodynamic conditions.
EOS models are discussed in Section 5.

The following boundary conditions must be satisfied at the free fluid interface:

i) the normal component of the velocity field is continuous across the material
interface.

ii) the normal and tangential components of the magnetic field at the material
interface are related as

n- (B2 — Bl) = 0, (6)

A
nx (H, - H)) = —K, (7)

where K is the surface current density. Note that K = 0 for mercury.

The behavior of a fluid in the presence of electromagnetic fields is governed
to a large extent by the magnitude of the conductivity. For fluid at rest (4)
reduces to the diffusion equation
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This means that an initial configuration of magnetic field will decay with
typical diffusion time
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where L is a characteristic length of the spatial variation of B. Despite being
good enough conductors, most of liquid metals including mercury are charac-
terized by small diffusion times (33 microseconds for a mercury droplet of 1
cm radius) compared to some solid conductors (1 s for a copper sphere of 1
cm radius). Therefore the magnetic field penetration in such liquid conduc-
tors can be considered as an instantaneous process. This allows us to assume
that the magnetic field is constant in time (low magnetic Reynolds number
approximation, see [18]), and to obtain the current density distribution using
Ohm’s law

J=0 (—grad¢+ %u X B) : (9)



where ¢ is the electric field potential. The potential ¢ satisfies the following
Poisson equation
_ 1

A¢ = ~div(u x B), (10)

and the Neumann boundary conditions

dp| 1 .
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where n is a normal vector at the fluid free surface I'. This approach is appli-
cable for the study of MHD processes in mercury typical for Muon Collider
applications. Notice that the assumption of a constant in time magnetic field
also excludes Alfven waves, which do not have a major impact on the wave
dynamics and surface evolution in our problems.

The linear stability analysis of thin conducting liquid jets moving along the
axis of a uniform magnetic field [1] and the corresponding analysis for the
mercury jet used in the Muon Collider [10] show that an axial uniform field
tends to stabilize the jet surface against the natural Rayleigh instability. In
this paper, we show that magnetic fields also stabilizes the Richtmyer-Meshkov
instability induced by an external energy deposition.

3 Numerical Implementation

In this section, we will describe numerical ideas implemented in the FronTier
MHD code. The system of MHD equations used in our studies (1) - (3), (10) -
(11) is a coupled hyperbolic - elliptic system in geometrically complex moving
domain. We have developed a numerical method for solving such systems and
the corresponding parallel software. The numerical method treats the MHD
system in the operator splitting manner. We use the front tracking hydro code
FronTier with free interface support for solving the hyperbolic subsystem (1)
- (3). The Poisson equation (10) - (11) is solved using an embedded boundary
method for elliptic equations in irregular domains.

FronTier represents interfaces as lower dimensional meshes moving through a
volume filling grid [8]. The traditional volume filling finite difference grid sup-
ports smooth solutions located in the region between interfaces. The location
of the discontinuity and the jump in the solution variables are defined on the
lower dimensional grid or interface. The dynamics of the interface comes from
the mathematical theory of Riemann solutions, which are an idealized solu-
tions of single jump discontinuities for a conservation law. FronTier is capable



of tracking three dimensional interfaces and resolving their topological changes
[9]. Notice that since we are primarily interested in the contact discontinuity
propagation, we restrict ourselves to the Riemann problem for a hydro system
of equations and therefore neglect some elementary waves typical for the MHD
Riemann problem. Some features of the FronTier hyperbolic solvers include
the use of high resolution methods such as MUSCL with a large selection of
Riemann solvers and realistic models for the equation of state.

The existence of a tracked surface, across which physical parameters and the
solution change discontinuously, has important implications for the solution
of an elliptic or parabolic system. In a forthcoming paper, we will describe an
approached based on the finite volume discretization which uses the embedded
boundary method for irregular cells near the interface. In the current problem
geometry, however, the elliptic equation (10) - (11) has a trivial solution which
allows us to skip the expensive step of solving the elliptic problem numerically.
Namely, in the case of a 2D jet moving along the axis of a uniform magnetic
field div(uxB) = 0 and (ux B)-n = 0, where n is a normal vector at the fluid
free surface. This implies ¢ = const and J = Zu x B. This simplification is
not valid for other configurations of the jet and for 3D problems in particular.

4 Numerical Simulation of the Richtmyer-Meshkov Instability in
Liquid Jets

In this section, we present results of the numerical simulation of the Richtmyer-
Meshkov type instability in liquid metal (mercury) jets in magnetic fields
due to the proton energy deposition. The problem was inspired by the muon
collider target application. The target [20] is shown schematically in Figure 1.
It will contain a series of mercury jet pulses of about 0.5 ¢m in radius and 60
cm in length. Each pulse will be shot at a velocity of 30-35 m/sec into a 20
Tesla magnetic field at a small angle (0.1 rad) to the axis of the field. When
the jet reaches the center of the magnet, it is hit with a 3 ns proton pulse
depositing about 100 J/g of energy in the mercury.

In the numerical simulation, the initial mercury jet is taken as a 15 cm long
and 1 cm diameter ideal cylinder with no surface perturbations. The influence
of the proton pulse was modeled by adding the proton beam energy density to
the internal energy density of mercury at a single time step. The distribution
of the proton energy deposition in mercury was approximated by a 2D. The
liquid was modeled using the stiffened polytropic equation of state [3,17]

P=(n—1)p(E+ Ex) = 1Px

with the adiabatic exponent 7; = 3.2 and the stiffening constant P, =
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Fig. 1. Schematic of the muon collider target.

8 - 10'%/(cm - sec?). The polytropic gamma law gas [3] was used for the
ambient gas. Numerical simulations on a 2100 X 700 grid were performed on
32 processors of a distributed memory cluster of Pentium processors running
RedHat Linux. The evolution of the mercury jet due to a single proton pulse
energy deposition is depicted in Figure 2.

The external energy deposition in the mercury jet resulted in an instanta-
neous heating and formation of a high pressure domain and strong waves. A
multiple reflection of pressure waves from the wall caused a series of surface
perturbations which evolved in the form of narrow radial jets. The first pres-
sure wave initialized small grid related surface perturbations. During the later
time evolution, neighboring radial jets merged forming a spatial distribution
of RM type surface instabilities independent of the grid size. Due to the in-
teraction of the perturbed interface with the next reflected pressure wave, a
period doubling of the surface instabilities was observed during a short period
of time. This period doubling was diminished as radial jets merged during
the instability growth. Notice that a shock (pressure) wave reflects from the
mercury — gas interface as a rarefaction wave and the result of the rarefac-
tion wave reflection is a shock (pressure) wave. Such a multiple reflection of
pressure/rarefaction waves from the jet surfaces and a series of RM type in-
stabilities on the jet surface resulted from the use of the stiffened polytropic
equation of state capable of modeling a single phase fluid with tension.

Figure 3 depicts results of the numerical simulation of the Richtmyer - Meshkov
type instability evolution in the presence of a strong magnetic field. A uni-
form magnetic field was applied to the mercury jet along the axis. The Lorentz
force due to induced currents reduced both the wave speed in the liquid and
the velocity of surface instabilities. As a result, surface instabilities were sup-
pressed in a 10 Tesla magnetic field during times typical for the jet breakup
at zero magnetic field. The velocity reduction of jet surface instabilities in the
magnetic field is showed in Figure 4.



Fig. 2. Evolution of the mercury jet due to the proton energy deposition, B = 0:
a) Initial shape of the jet, t = 0; b) Surface instabilities due to the second reflected
pressure wave, t = 40 us; ¢) Interaction of the third reflected pressure wave with the
surface, t = 45 ps; d) Surface instabilities due to the third reflected pressure wave,
t = 59 us; e) Interaction of the fourth reflected pressure wave with the surface, t =
67 ps.

5 Equation of State Model for Two-phase Fluid

Numerical simulation discussed in the previous section showed that domains
with large values of liquid tension developed during the jet evolution. The ex-
istence of such domains of tension or “negative pressure” in rarefaction waves
is a typical feature of the stiffened polytropic EOS, which is a single phase
EOS model for liquids. The absolute values of the “negative pressure” in our
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Fig. 3. Stabilizing of the mercury jet by the longitudinal magnetic field: a) B = 0,
b) B=2T,c) B=4T,d) B=6T, e) B = 10T.
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Fig. 4. Velocity of jet surface instabilities in the magnetic field.



simulations significantly exceeded the critical value of the mercury cavitation
threshold estimated in [24]. Therefore we believe that the formation of cavi-
ties takes place in strong rarefaction waves and cavitation bubbles influence
the wave dynamics in mercury and the Richtmyer-Meshkov instability of the
jet surface. Analysis of experimental results tend to confirm this assumption.
Therefore the modeling of cavitation and liquid properties under extreme ther-
modynamic conditions is essential for obtaining accurate predictions based on
numerical simulations. In this section, we will derive an equilibrium homo-
geneous model for a two-phase system in the isentropic approximation. The
application of this EOS to the Muon Collider/Neutrino Factory experiments
will be described in Section 6.

The isentropic approximation is valid for numerous physically important phe-
nomena characterized by small time scales. The homogeneous flow approxi-
mation provides the simplest technique for analyzing two-phase (or multiple
phase) flows. Suitable average properties are determined and the mixture is
treated as a pseudofluid that obeys the usual equation of single-component
flow. The isentropic approximation reduces by one the number on independent
variables defining the thermodynamic state. As a result, all thermodynamic
states in our EOS will be functions of only density. The proposed EOS consists
of three branches. The pure vapor and liquid branches are described by the
polytropic and stiffened polytropic EOS models reduced to a single isentrope.
The two branches are connected by a model for the liquid-vapor mixture. The
analytical expressions for thermodynamic functions in all branches as well and
their connection are described below.

5.1 Liquid phase model

The equation of the stiffened polytropic EOS model describing the pure liquid
phase is

P=(n=1)p(E+ Ex) — 1P, (12)

where +; is the adiabatic exponent for the liquid, and P,, and F are two
model parameters defining the maximum tension (the maximum value of the
“negative pressure” achievable in the liquid) and the energy shift constant
correspondingly. F, can be used to obtain the quantitative agreement of the
internal energy of the liquid at normal conditions with experimental data. The
expression for the entropy is

R
= ~—(log(P + Poc) — mlogp), (13)
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where R; is a model constant similar to the universal gas constant R = 8.314
erg/degrees.

Reducing the equation (12) to an isentrope S = Sy and using the main ther-
modynamic identity,

dE = —PdV + TdS,

the following expressions can be derived:

P=np" — Py, (14)
U/ -1 Poo
E=—1 iy = _pg 15
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T="15m 17
where
S, -1
m = exp (L) , (18)
R,

and @, is the speed of sound in liquid.
5.2 A model for the liquid - vapor mizture

The following expression for the speed of sound in an equilibrium homogeneous
mixture of liquid and gas has been derived and experimentally validated [22,23]

1 o l1—«
— = lap , + l-«a P N/ ( + ) ’ 19
a2 (@Psaro + ( )Paat) Psatwlsatw®  PsatiGsat,i® 1)

where pgat., Psatis @satw, sat, are the density and the speed of sound of vapor
and liquid in saturation points, respectively, and « is the void fraction

P — Psat,l
o= ———".
Psaty — Psat,l

Integrating the sound speed with respect to the density, the following pressure
- density relation along an isentrope can be obtained [22]

psat,vasat,UQ(psat,l + a(psat,v - psat,l))

P = Psat,l + Pvllog D) D) 5
psat,l(psat,vasat,v - a(psat,vasat,v — Psat,lAsat,l ))
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where Py, is the liquid pressure in the saturation point and

2 2
P, = Psat,wlsat,v” Psat,lGsat,l (psat,v - psat,l)
vl — .

(21)
psat,v2a5at,v2 - psat,l2asat,l2

Using the second law of thermodynamic at constant entropy and the expres-
sions above, we can derive an analytical expression for the specific internal
energy of the vapor-liquid mixture. The formula is omitted here for the sake
of simplicity.

5.8  Vapor phase model

The equation of the polytropic EOS model describing the pure vapor phase is

P =(y —1)Ep, (22)

where 7, is the adiabatic exponent of the vapor. The expression for the entropy
is

S =

po— (log(P — v.logp). (23)

Similar to the pure liquid case, we can perform the isentropic reduction and
obtain

P=n,p", (24)

b= %771 AN (25)

@y ="lp ", (26)

T="p (27)
where

=y (B02 211 (29

and a, is the speed of sound in vapor.

We will describe a procedure for defining all coefficients in the formulas (12)-
(31) using a minimal set of input parameters. The resulting EOS satisfies the

12



smoothness and stability requirements [17]. We choose the following minimal
set of input parameters most of which are measurable quantities:

Psat,, density of the saturated liquid

Psat,w, density of the saturated vapor

Piyat,, pressure of the saturated liquid

Tiqt, temperature of the saturated liquid

Cy, specific heat at constant volume of the liquid (29)
@sqt, 1, sound speed of the saturated liquid

@sqt,p, sOund speed of the saturated vapor

or

v,  adiabatic exponent of the saturated vapor.

Then all parameters of the EOS can be defined uniquely using the following
procedure.

1. If @sq, is given in the input set (29), calculate Py, using (20)-(21) and
input parameters (29). Then find ~, from (24) and (26)

2 psat,v
sat,v .
’ Psat,v

Yo =@

If ~, is instead given as an input parameter, solve numerically a system of
nonlinear equations involving (20)-(21), (24), and (26) for as4,. Then find
P4t as above.

2. Find 7, from (24) substituting p = psatp-
3. Find Ey4, using (25).

4. Find the change of the specific internal energy AE in the mixed phase using
the expression for mixed state internal energy.

5. Find E,, as

Esat,l = Esat,v + AFE.

6. Find v, as

2
a’sat,l

1
S R
4 Tsat,lCV

M=

DO |
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which is a solution of the quadratic equation arising from definitions

Py 2 " Pss R,
=—, a = , Cy= .
Rip T p V-1

T

Here we used only one solution of the quadratic equation which satisfies the
thermodynamic requirement ; > 0 and assumed that P << P,. Find R; and
P, using the last expressions for 7; and Cly .

7. Find n; and E using (14) and (15) at p = psatp-

9. Find T4, using (27) and the value of the universal gas constant R.

Note that the calculation of entropy for the liquid and vapor phases using
(13) and (23), respectively, may lead to different numerical values of the en-
tropy in both phases for a given choice of input parameters. This, however,
does not contradict the isentropic assumption. All simplified models define
entropy through the integration of the second law of thermodynamics and,
as a result, the entropy always contains an arbitrary additive constant. To
define an absolute value of the entropy the 3rd law of thermodynamics is re-
quired. The Nernst theorem states that S = 0 at zero absolute temperature.
All simplified thermodynamic models, however, can not describe the behavior
of materials at temperatures close to zero. Since the Nernst theorem can not
be satisfied within the polytropic or stiffened polytropic EOS approximations,
all three models used in our derivation contain arbitrary additive constants
for the entropy which can be (implicitly in our derivation) chosen to satisfy
the constant entropy requirement.

6 Numerical Simulation of Mercury Thimble Experiments

To study the influence of proton pulse induced thermal shocks on mercury
targets, a series of experiments were conducted at the Alternating Gradi-
ent Synchrotron (AGS) at BNL and On-Line Isotope Mass Separator facility
(ISOLDE) at CERN [6,7,15]. We will discuss here some experimental and
numerical simulation results of the mercury thimble studies.

The schematic of the mercury thimble experiment is shown in Figure 5. The
volume of the thimble excavated in a stainless steel bar is 1.3 cm?. It consists
from bottom to top of a half sphere (r = 6 mm), and a vertical cylinder (r =h
= 6 mm). The mercury has a free surface in up-direction, where it can expand
to. The proton pulse is schematically denoted by the green dashed line. It has
approximately Gaussian distribution and the intensity range of 0.6 — 17 - 10*2
protons at energy 24 GeV.

Figure 6, obtained with high speed shadow photography, depicts the mer-
cury splash due to the interaction with a 3.7 teraproton pulse [6,7]. The grid
on the images is 1 ¢cm x 1 cm.

We have performed numerical simulations of the mercury splash evolution
in the thimble using the FronTier code with the two-phase equation of state

14
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Fig. 6. Images of the mercury splash evolution due to the interaction with a pulse
of 3.7 - 102 protons at energy 24 GeV. Experiments were performed at BNL AGS.

model described in the previous section. To calculate the actual energy de-
position in the mercury due to the interaction with a proton pulse, we used
the results of MARS code simulations performed by N. Mokhov [19]. Figure 7
shows an image sequence of the mercury splash evolution in the thimble.

We have studied the evolution of the mercury splash in the thimble at
different values of the proton intensity and the r.m.s. spot size of the beam,
and compared our results with experimental data.

Figure 8 shows a reasonably good agreement of experimental and computed
velocity of the mercury surface as a function of the r.m.s. spot size of the
beam. The blue point on the experimental curve corresponding to the BNL
AGS experiment is not exact. It was extrapolated from results obtained at
much lower beam intensity and contains a large amount of uncertainty. There
is no exact knowledge of the energy deposition distribution as well. Therefore,
we can conclude that the time scale of the numerically computed mercury
splash evolution is in agreement with experimental measurements. We have
also reproduced accurately the dependence of the mercury surface velocity
on the beam intensity at early times. We would like to emphasize that we
were not able to obtain a good quantitative comparison with experiments
using the previous one-phase stiffened polytropic EOS model for mercury.

15
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(a) t=0.24 ms (b) t=0.48 ms (c) t=0.61 ms (d) t=1.0 ms

Fig. 7. Numerical simulation of the mercury splash in the thimble

This also confirms the importance of cavitation for the dynamics of waves and
the evolution of the Richtmyer-Meshkov instability of the free surface.

However, numerical simulation do not capture some experimentally ob-
servable fine effects in the splash evolution such as the reduction of the splash
velocity during first 2 microseconds after the arrival of the proton pulse [6]. We
believe that this velocity reduction was caused by a reduction of the mercury
internal energy due to cavitation. Because of the incomplete thermodynamics
of our EOS, the code can not capture such effects without significant improve-
ments of the EOS model. We will describe briefly our current work in this
direction in the next section.

7 Conclusions

In this paper, we described a numerical approach based on the method
of front tracking for the numerical simulation of magnetohydrodynamic free
surface flows and studied the influence of cavitation and magnetic fields on
the Richtmyer-Meshkov instability in mercury induced by an external energy
deposition. The numerical simulation shed light on the evolution of the pro-
posed Muon Collider target. The target will be designed as a pulsed jet of
mercury interacting with strong proton beams in a 20 Tesla magnetic field.
Without a magnetic field, the instantaneous heating of mercury and the for-
mation of high pressure region due to the proton energy deposition cause
strong waves traveling in the radial direction. Multiple reflections of pres-
sure/rarefaction waves from the mercury jet - ambient gas interface lead to
Richtmyer-Meshkov instabilities of the jet surface. The growth of surface in-
stabilities and the breakup of the mercury jet can create difficulties for the

16
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Fig. 8. Velocity of the mercury splash in the thimble as a function of the r.m.s. spot
size of the beam.

Muon Collider target design. However, a strong uniform axial magnetic field
significantly reduces the amplitude and velocity of RM instabilities as well as
the velocity of waves. We have shown that a 10 Tesla magnetic field is able
to stabilize the jet during period of times typical for the jet breakup at zero
magnetic field. We would like to emphasize strong dependence of the dynam-
ics of shock waves and their interaction with the surface on the nature and
parameters of the equation of state and qualitative nature of these results.
In current MHD simulations, we used a stiffened polytropic equation of state
for mercury. Such an EOS describes a one phase fluid with tension. It was
estimated that strong rarefaction waves in the jet lead to the cavitation of
mercury and cavitation bubbles influence the dynamics of waves. In order to
study this phenomena, we have developed in the isentropic approximation a
simple homogeneous EOS with the phase transition (cavitation) support and
applied it to the numerical study of the mercury splash evolution typical for
BNL and CERN Neutrino Factory experiments. We have obtained a good
agreement of the time scale of the numerically computed mercury splash ve-
locity with experimental data for a wide range of proton beam parameters.
Some disagreements with experiments of the mercury splash evolution at early
times can be explained by the incomplete thermodynamics of our equation of
state model. To improve the modeling of the cavitation dynamics, we have
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been working on a full thermodynamics equation of state model coupled to
a Rayleigh-Plesset type equation for an average bubble evolution. Such an
equation will include implicitly the drug, surface tension, and viscous forces,
and the mass transfer due to the phase transition. The model will be applied
to future studies of processes in the Muon Collider/Neutrino Factory target as
well as hydrodynamic aspects of the cavitation induced erosion in the target
for the Spallation Neutron Source.
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